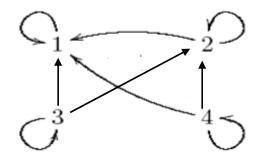
Definição 1.1.9: (Relação de ordem parcial)

Uma relação binária reflexiva, anti-simétrica e transitiva diz-se uma relação de ordem parcial. "r.o.p."

Exemplo:

$$X = \{1, 2, 3, 4\}$$

$$R = \{(1, 1), (2, 2), (3, 3), (4, 4), (4, 2)(2, 1), (4, 1), (3, 2), (3, 1)\}$$



- ② $\mathbb N$ com a relação \leq definida por, $n \leq m$ se e só se n é menor ou igual a $m, m, m \in \mathbb N$
- As relações de ordem parcial são usualmente designadas por $\leq x \leq y \iff (x,y) \in \leq (x \text{ está em relação com y})$
- Se ≤ é uma r.o.p em X. Dois elementos x e y ∈ X dizem-se comparáveis se

$$x \le y$$
 ou $y \le x$.

Escrevemos x < y para significar $x \le y$ e $x \ne y$.

Se \leq é uma r.o.p. em X e todos os elementos de X são comparáveis então \leq diz-se uma relação de ordem total (r.o.t.)

Definição 1.1.10: (Conjunto parcialmente /totalmente ordenado)

Se X é um conjunto e \leq é uma r.o.p. em X. Então:

- (1) O par (X, ≤) diz-se um conjunto parcialmente ordenado (c.p.o.)
- (2) Se a relação \leq for de ordem total então (X, \leq) diz-se um conjunto totalmente ordenado (c.t.o.) ou uma cadeia

Exemplos:

Seja \leq a relação de ordem usual em \mathbb{R} . Então (\mathbb{R}, \leq) é uma cadeia. (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) , (\mathbb{Q}, \leq) são cadeias (para a ordem usual).

$$X = \{1, 2, 3\}$$

$$P(X) = \{\emptyset, X, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}\$$

Defina-se em $P(X)\,$ a relação binária dada por: Para (A), (B) em $P(X)\,$

$$A \leq B \iff A \subseteq B$$

Refexiva? $A \in \mathcal{P}(X)$

Ora,
$$A \leq A$$
 pois $A \subseteq A$

Anti-simétrica? $A, B \in \mathcal{P}(X)$

Suponha-se que $A \leq B$ e $B \leq A$.

Transitiva? (A, B,
$$C \in \mathcal{P}(X)$$

Suponha-se que
$$A \leq B$$
 e $B \leq C$.
$$\label{eq:alpha-se} \begin{picture}(100,0) \put(0,0) \put(0,0)$$

Assim,

$$A \subseteq B \subseteq C$$
, logo

$$A \subseteq C \Leftrightarrow A \le C$$
.

$$(P(X), \leq)$$

$$A\subseteq C \Leftrightarrow A \leq C.$$

$$(P(X), \leq) \qquad (P(X), \leq)$$

$$\text{e um c.p.o.} \qquad \text{não \'e c.t.o.}$$

Em N definimos a relação de divisibilidade por:

 $a \le b \iff a|b \ (a \text{ divide } b, \text{ i.e. } \exists c \in \mathbb{N} \ ac = b),$ para quaisquer $a,\ b\in\mathbb{N}$. Então, $(\mathbb{N},\ |)$ é um c.p.o.

(não é c.t.o.)

Observação:

 $3|9 \qquad 3|3 \qquad 2|10 \qquad {\it 7}~{\it e}~{\it 8}~{\it n\~{a}o}~{\it compar\'{a}veis}$